United States Naval Academy Mechanical Engineering Department

EM463 Reactor Physics II

Catalog Description: EM463 Reactor Physics II Credit: 3 (2-2-3)

The topics covered include neutron generation times, reactor period, delayed neutrons, negative temperature coefficient, xenon poisoning, control rod theory, shielding and a reactor kinetics case problem

Prerequisites: EM362 **Corequisites:** none

Textbooks: Glasstone and Sesonske, Nuclear Reactor Engineering, fourth edition, volume one, Chapman and Hall

Course Director: Prof. Martin E. Nelson

Objectives¹:

- 1. To teach basic principles of reactor analysis (a,b,c)
- 2. To teach nuclear instrumentation and data analysis techniques (a,b,c)

Course Content:

No.	Topic or Subtopic	hrs
1	Reflected reactors	2
2	Multi-group theory and Analysis	4
3	Heterogeneous reactors	2
4	Reactor kinetics	6
5	Control rod theory	5
6	Temperature coefficients	4
7	Fission product poisoning	4
8	Fuel isotopic changes	2
9	Reactor shielding	4
10	Health Physics and Statistics	4
11	Measurement of multiplication factor and migration area	8
12	Neutron activation analysis	6
13	Alpha spectroscopy, liquid scintillation counting	4

Evaluation:

- 1. Quizzes
- 2. Homework
- 3. Exams
- 4. Laboratory Reports

EM463 Reactor Physics II

Acquired Abilities²:

- 1.1 Students will acquire ability to perform transient nuclear reactor analysis (1,2,3)
- 1.2 Students will acquire ability to perform multi-group heterogeneous reactor analysis (1,2,3)
- 1.3 Students will demonstrate the ability to use modern nuclear instruments and data analysis and acquisition systems (1,2,3,7)
- 1.4 Students will acquire ability to understand basic health physics and shielding considerations for a nuclear system (1,2,3,6).

Date of Latest Revision: 22 Oct 2001

¹ Letters in parenthesis refer to the <u>Program Objectives</u> of the <u>Mechanical Engineering Program</u>.

² Numbers in parenthesis refer to the evaluation methods used to assess student performance.